Vbench performance benchmarks for NumPy

vb_ufunc

numpy.abs(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.abs(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.abs_a__10types.png

numpy.absolute(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.absolute(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.absolute_a__10types.png

numpy.add(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.add(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.add_a_a__10types.png

numpy.add_scalar

Benchmark setup

from numpy_vb_common import *
x = numpy.asarray(1.0)

Benchmark statement

x+x

Performance graph

_images/numpy.add_scalar.png

numpy.add_scalar2_numpy.float32

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float32)

Benchmark statement

numpy.add(d, 1)

Performance graph

_images/numpy.add_scalar2_numpy.float32.png

numpy.add_scalar2_numpy.float64

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float64)

Benchmark statement

numpy.add(d, 1)

Performance graph

_images/numpy.add_scalar2_numpy.float64.png

numpy.add_scalar_conv

Benchmark setup

from numpy_vb_common import *
x = numpy.asarray(1.0)

Benchmark statement

x+1.

Performance graph

_images/numpy.add_scalar_conv.png

numpy.add_scalar_conv_complex

Benchmark setup

from numpy_vb_common import *
x = numpy.asarray(1.0+1j); y = complex(1., 1.)

Benchmark statement

x+y

Performance graph

_images/numpy.add_scalar_conv_complex.png

numpy.and_bool

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.bool)

Benchmark statement

d & d

Performance graph

_images/numpy.and_bool.png

numpy.arccos(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arccos(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arccos_a__10types.png

numpy.arccosh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arccosh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arccosh_a__10types.png

numpy.arcsin(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arcsin(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arcsin_a__10types.png

numpy.arcsinh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arcsinh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arcsinh_a__10types.png

numpy.arctan(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arctan(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arctan_a__10types.png

numpy.arctan2(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.arctan2(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arctan2_a_a__7types.png

numpy.arctanh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.arctanh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.arctanh_a__10types.png

numpy.bitwise_and(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.bitwise_and(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.bitwise_and_a_a__3types.png

numpy.bitwise_not(a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.bitwise_not(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.bitwise_not_a__3types.png

numpy.bitwise_or(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.bitwise_or(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.bitwise_or_a_a__3types.png

numpy.bitwise_xor(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.bitwise_xor(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.bitwise_xor_a_a__3types.png

numpy.broadcast

Benchmark setup

from numpy_vb_common import *
d = numpy.ones((50000, 100), dtype=numpy.float64)
e = numpy.ones((100,), dtype=numpy.float64)

Benchmark statement

d - e

Performance graph

_images/numpy.broadcast.png

numpy.ceil(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.ceil(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.ceil_a__7types.png

numpy.conj(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.conj(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.conj_a__10types.png

numpy.conjugate(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.conjugate(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.conjugate_a__10types.png

numpy.copysign(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.copysign(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.copysign_a_a__7types.png

numpy.cos(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.cos(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.cos_a__10types.png

numpy.cosh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.cosh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.cosh_a__10types.png

numpy.count_nonzero

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.bool)

Benchmark statement

numpy.count_nonzero(d)

Performance graph

_images/numpy.count_nonzero.png

numpy.deg2rad(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.deg2rad(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.deg2rad_a__7types.png

numpy.degrees(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.degrees(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.degrees_a__7types.png

numpy.divide(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.divide(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.divide_a_a__10types.png

numpy.divide_scalar2_inplace_numpy.float32

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float32)

Benchmark statement

numpy.divide(d, 1, out=d)

Performance graph

_images/numpy.divide_scalar2_inplace_numpy.float32.png

numpy.divide_scalar2_inplace_numpy.float64

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float64)

Benchmark statement

numpy.divide(d, 1, out=d)

Performance graph

_images/numpy.divide_scalar2_inplace_numpy.float64.png

numpy.divide_scalar2_numpy.float32

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float32)

Benchmark statement

numpy.divide(d, 1)

Performance graph

_images/numpy.divide_scalar2_numpy.float32.png

numpy.divide_scalar2_numpy.float64

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float64)

Benchmark statement

numpy.divide(d, 1)

Performance graph

_images/numpy.divide_scalar2_numpy.float64.png

numpy.equal(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.equal(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.equal_a_a__10types.png

numpy.exp(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.exp(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.exp_a__10types.png

numpy.exp2(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.exp2(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.exp2_a__10types.png

numpy.expm1(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.expm1(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.expm1_a__10types.png

numpy.fabs(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.fabs(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.fabs_a__7types.png

numpy.floor(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.floor(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.floor_a__7types.png

numpy.floor_divide(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.floor_divide(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.floor_divide_a_a__10types.png

numpy.fmax(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.fmax(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.fmax_a_a__10types.png

numpy.fmin(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.fmin(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.fmin_a_a__10types.png

numpy.fmod(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.fmod(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.fmod_a_a__7types.png

numpy.frexp(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.frexp(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.frexp_a__7types.png

numpy.greater(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.greater(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.greater_a_a__10types.png

numpy.greater_equal(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.greater_equal(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.greater_equal_a_a__10types.png

numpy.hypot(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.hypot(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.hypot_a_a__7types.png

numpy.invert(a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.invert(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.invert_a__3types.png

numpy.isfinite(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.isfinite(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.isfinite_a__10types.png

numpy.isinf(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.isinf(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.isinf_a__10types.png

numpy.isnan(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.isnan(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.isnan_a__10types.png

numpy.ldexp(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.ldexp(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.ldexp_a_a__3types.png

numpy.left_shift(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.left_shift(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.left_shift_a_a__3types.png

numpy.less(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.less(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.less_a_a__10types.png

numpy.less_equal(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.less_equal(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.less_equal_a_a__10types.png

numpy.less_than_scalar2_numpy.float32

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float32)

Benchmark statement

d < 1

Performance graph

_images/numpy.less_than_scalar2_numpy.float32.png

numpy.less_than_scalar2_numpy.float64

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.float64)

Benchmark statement

d < 1

Performance graph

_images/numpy.less_than_scalar2_numpy.float64.png

numpy.log(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.log(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.log_a__10types.png

numpy.log10(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.log10(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.log10_a__10types.png

numpy.log1p(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.log1p(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.log1p_a__10types.png

numpy.log2(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.log2(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.log2_a__10types.png

numpy.logaddexp(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.logaddexp(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logaddexp_a_a__7types.png

numpy.logaddexp2(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.logaddexp2(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logaddexp2_a_a__7types.png

numpy.logical_and(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.logical_and(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logical_and_a_a__10types.png

numpy.logical_not(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.logical_not(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logical_not_a__10types.png

numpy.logical_or(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.logical_or(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logical_or_a_a__10types.png

numpy.logical_xor(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.logical_xor(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.logical_xor_a_a__10types.png

numpy.maximum(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.maximum(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.maximum_a_a__10types.png

numpy.minimum(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.minimum(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.minimum_a_a__10types.png

numpy.mod(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.mod(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.mod_a_a__7types.png

numpy.modf(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.modf(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.modf_a__7types.png

numpy.multiply(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.multiply(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.multiply_a_a__10types.png

numpy.negative(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.negative(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.negative_a__10types.png

numpy.nextafter(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.nextafter(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.nextafter_a_a__7types.png

numpy.nonzero

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.bool)

Benchmark statement

numpy.nonzero(d)

Performance graph

_images/numpy.nonzero.png

numpy.not_bool

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.bool)

Benchmark statement

~d

Performance graph

_images/numpy.not_bool.png

numpy.not_equal(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.not_equal(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.not_equal_a_a__10types.png

numpy.ones_like(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.ones_like(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.ones_like_a__10types.png

numpy.or_bool

Benchmark setup

from numpy_vb_common import *
d = numpy.ones(20000, dtype=numpy.bool)

Benchmark statement

d | d

Performance graph

_images/numpy.or_bool.png

numpy.power(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.power(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.power_a_a__10types.png

numpy.rad2deg(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.rad2deg(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.rad2deg_a__7types.png

numpy.radians(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.radians(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.radians_a__7types.png

numpy.reciprocal(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.reciprocal(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.reciprocal_a__10types.png

numpy.remainder(a,a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.remainder(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.remainder_a_a__7types.png

numpy.right_shift(a,a)_3types

Benchmark setup

from numpy_vb_common import *
types=['int32', 'int16', 'int64']

Benchmark statement

[numpy.right_shift(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.right_shift_a_a__3types.png

numpy.rint(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.rint(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.rint_a__10types.png

numpy.sign(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.sign(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.sign_a__10types.png

numpy.signbit(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.signbit(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.signbit_a__7types.png

numpy.sin(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.sin(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.sin_a__10types.png

numpy.sinh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.sinh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.sinh_a__10types.png

numpy.spacing(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.spacing(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.spacing_a__7types.png

numpy.sqrt(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.sqrt(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.sqrt_a__10types.png

numpy.square(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.square(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.square_a__10types.png

numpy.subtract(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.subtract(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.subtract_a_a__10types.png

numpy.tan(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.tan(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.tan_a__10types.png

numpy.tanh(a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.tanh(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.tanh_a__10types.png

numpy.true_divide(a,a)_10types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'complex256', 'float64', 'complex128', 'complex64', 'int64', 'float32']

Benchmark statement

[numpy.true_divide(a,a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.true_divide_a_a__10types.png

numpy.trunc(a)_7types

Benchmark setup

from numpy_vb_common import *
types=['float16', 'int32', 'int16', 'longfloat', 'float64', 'int64', 'float32']

Benchmark statement

[numpy.trunc(a) for t, a in squares_.iteritems() if t in types]

Performance graph

_images/numpy.trunc_a__7types.png